干扰实验指南

Guide to interference testing in clinical chemistry
前言

本标准按照 GB/T 1.1—2009 给出的规则起草。
本标准主要起草单位：卫生部临床检验中心、北京大学第一医院、北京协和医院、首都医科大学附属北京同仁医院。
本标准主要起草人：汪静、陈文祥、赵海舰、谢建红、王冬环、申子瑜、王学晶、邱玲、刘向祎。
干扰实验指南

1 范围

本标准规定了评价干扰物质对检测系统影响的方法。
本标准适用于体外诊断医学设备厂商与临床实验室对临床实验室定量方法进行干扰评价。

2 术语和定义

下列术语和定义适用于本文件。

2.1 干扰 interference

在临床化学中，被测物浓度因样品特性或其他成分的影响而出现的临床显著性偏差。这种影响可见于检测系统的非特异性，指示反应响应不佳，被测物活性抑制等情况下。

2.2 干扰物 interfering substance

不是被测量，但对测量结果有影响的量。
[JJF 1001—1998，定义 4.8]

2.2.1 内源性干扰物 endogenous interferent

因病理原因在样品中出现的物质（如胆红素或血红蛋白），可干扰对其他物质的检测。

2.2.2 外源性干扰物 exogenous interferent

样品中来自于体外的可干扰其他物质检测的物质（如药物及其代谢物，样品防腐剂等）。

2.3 干扰标准 interference criteria

被测物浓度与真值间的可产生的最大允许干扰偏差，此偏差可能影响医生的医疗决定。

2.4 被测量 measurand

作为测量对象的特定量。
[JJF 1001—1998，定义 4.7]

2.5 特异性 specificity

干扰物存在时分析系统可以正确区分或检测被测量的能力。

2.6 总分析误差 total analytical error

测定值与参考值间的差异。
[JCGM 200:2008，定义 2.16]
3 干扰实验方案

3.1 干扰物对检测结果的影响

3.1.1 干扰物的干扰效果

3.1.1.1 检测方法的总分析误差有3个主要来源：不精密度、方法特异性偏差、样品特异性偏差。方法学评价时通常只考虑前两者，样品特异性偏差常被认为与特定样品有关，不精密度则属于方法学的计量特征。但如对一种检验方法本身易受某种干扰物质的影响，则干扰物既可引起系统误差也可引起偶然误差。

3.1.1.2 当采用特异性较好的方法做为比对方法时，特定人群中样品中某种干扰物的平均浓度可引起系统偏差，而偏离平均偏差的个体差异则成为总偶然误差的成分。某些方法中随机干扰效果超过不精密度成为偶然误差的主要来源。

3.1.1.3 对于个体患者，干扰物的干扰效果可随样品中干扰物浓度的不同、不同沸点蒸馏或不同基质和溶剂的使用而有所不同。

3.1.1.4 干扰物对检测结果的影响可通过使用比对方法进行补偿或修正，使干扰物在特定患者群体中减小。对于常见的内源性干扰物（如胆红素、血红蛋白、脂类等），通过样品前处理、样品空白、血清基质校准或数学修正等方法减少干扰效果。

3.1.2 干扰效果机制

干扰物对分析过程的影响机制有：

——化学效应：干扰物通过与试剂竞争或抑制指示反应改变反应结果，也可通过络合或沉淀作用改变分析物的形式。

——生物效应：干扰物可具有与被测物质相似的性质，如荧光、颜色、光散射、洗脱位置或检测时的电极反应等。

——基质效应：干扰物可改变样品基质的物理特性，如黏度、表面张力、浊度或离子强度等，从而改变被测物浓度。

——酶抑制作用：干扰物可与金属激活因子形成螯合物，与催化位点结合，通过鼻基团而改变酶耐受性。

——干燥作用：干扰物对金属激活因子形成螯合物，与催化位点结合，通过鼻基团而改变酶耐受性。

——检测方法的非特异性：干扰物以与被测物同种的方式参与反应。尽管非特异性与干扰有所不同，但对实验结果的效果是相同的。如酶解在碱性苦味酸法测肌酐时发生反应，偶氮硫酸盐在重氮法测胆红素时发生反应，免疫学中的交叉反应等。

——水的取代效应：非水溶性物质（蛋白、酯类等）可通过取代液体血浆最大影响活性测量。但如测定的是水浆水被测量的浓度，则不存在水的取代效应。

3.2 干扰标准及被测量与干扰物实验浓度的确定

3.2.1 建立被评价方法的干扰标准

因干扰所致的允许误差标准与实验结果的临床应用有关，可通过总允许误差进行推断。总允许误差（TEa）包含方法学偏差、不精密度及干扰成分，是对检测方法的准确性要求。对于已精确确定准确性要求的分析物，可从总允许误差中减去方法学偏差、不精密度及相应生物学变异，剩余残差即为干扰成分。对于（0）无明确确定性要求的分析物，可采用下述方法确定总允许误差：

a）根据生物学误差确定总允许误差；不同被测量均有其固有的个体间生物学变异（CVi）及个体内生物学变异（CVe），现被广泛接受的观点是检测方法的理想质量指标为结果偏倚Bx＜
0.25\(\sqrt{CV_1^2+CV_2^2}\)，总允许误差 \(TE_1 < 1.65 (0.50CV_1) + 0.25\sqrt{CV_1^2+CV_2^2}\)。对因方法学或技术能力无法满足上述要求的分析项目，可使用最低质量规范 \(TE_1 < 1.65 (0.75CV_1) + 0.375\sqrt{CV_1^2+CV_2^2}\)。据生物学变异导出的常见生化检验项目质量规范参见附录 A。

b) 通过临床实践得出总允许误差：基于大量临床和实验室经验，经过广泛讨论，由专业学会、组织或个人在专业建议中提出的准确性指标。

c) 指分析变异确定总允许误差，干扰标准也可从总的长期分析不精密度中得出。如果干扰物所引起的误差小于一个标准差，则可认为干扰物的作用不大可能影响临床决定，因此不认为这种物质是干扰物。但考虑到现有的检测系统常具有极佳的精密度，用这种方法决定干扰标准可能使很多物质的干扰效果放大。

d) 基于法规和室间质量评价的质量规范：总允许误差也可以从有关实验室质量管理体系的法规中得到。如《临床实验室改进修正案 1988》(CLIA’88) 中提供的常见检测项目的质量规范，常见生化检验项目的 CLIA’88 质量规范参见附录 A。

3.2.2 被测量实验浓度的确定

宜选取被测量的 2 个医学决定水平作为干扰实验时的被测量浓度，也可根据临床需要选用参考范围的高限或低限或病理浓度。附录 B 中列出了常见被测量的建议实验浓度。

3.2.3 可能引起干扰作用的物质清单

干扰实验开始前应根据被评价方法的检测原理和预期用途列出可能引起干扰效果的物质清单。常见的可能产生干扰作用的物质有：

——样本中的异常物质：高浓度的血红蛋白、胆红素、甘油三酯等。

——药物：常见处方与非处方药，接受某项目检测的特定病人群体中常用的药物。

——代谢物：在特定病人群体中可能出现的异常生化代谢物与药物代谢物。

——样品添加剂及在样品采集与处理过程中可与之接触的物质：抗凝剂(肝素、EDTA、柠檬酸盐、草酸盐等)与防腐剂(NaF、HCl、碘酸盐等)、血清分离胶、样品采集容器及胶塞、导管、导管冲洗液、皮肤消毒剂、手术清洁剂、玻璃清洗液、手套粉末等。

——文献中提及的对与被评价方法类似的其他方法有干扰作用的物质。

——饮食：咖啡因、β-胡萝卜素等。

3.2.4 干扰物的实验浓度

进行干扰实验时干扰物的浓度可根据表 1 确定，常见可能内源性干扰物的建议实验浓度参见附录 C，药物干扰物的建议实验浓度请参见有关文献。

<table>
<thead>
<tr>
<th>干扰物类型</th>
<th>样品类型</th>
<th>干扰物实验浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td>药物与代谢物</td>
<td>血清、血浆与全血</td>
<td>至少 3 倍于治疗药物浓度或最高预期浓度</td>
</tr>
<tr>
<td></td>
<td>尿液</td>
<td>至少 3 倍于 24 h 尿清除率</td>
</tr>
<tr>
<td>内源性干扰物</td>
<td>血清、血浆与全血</td>
<td>目标病人群体中预期最高浓度</td>
</tr>
<tr>
<td>抗凝剂与防腐剂</td>
<td>血清、血浆与全血</td>
<td>5 倍于添加浓度</td>
</tr>
<tr>
<td></td>
<td>尿液</td>
<td>5 倍于 24 h 尿清除率</td>
</tr>
<tr>
<td>可能干扰物</td>
<td>样品类型</td>
<td>干扰物实验浓度</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>样品采集与处理设备</td>
<td>血清、血浆、全血、尿液</td>
<td>样品与设备接触24h,样品体积应与实际使用相同,需注意防止样品蒸发与不稳定分析物的丢失,同时应准备一份与实验样品相同的对比样品,此样品除了不与实验设备接触外其余处理过程均与实验样品相同</td>
</tr>
</tbody>
</table>

3.3 对实验操作人员的要求

实验操作人员应熟悉被评价检测系统的性能,熟练掌握操作流程,明确样品的正确处理方法,在确保仪器状态正常的情况下采用适当的校准品对仪器进行校准。

3.4 对检测系统的要求

3.4.1 仪器

仪器性能应满足干扰实验的要求。精密度与厂家参数一致,也可根据相应卫生行业标准进行精密度评估。方法学偏差应通过回收实验或方法学比较实验(参见相应卫生行业标准)确定,恒定偏差不会影响干扰实验结果,但比例性偏差却可能造成对干扰实验结果的错误判断。仪器检测时不应存在明显的携带污染。在实验开始前,分析系统应表现出稳定的运行状态。实验期间应数据统计质控程序对运行状态进行监测。

3.4.2 试剂

进行干扰实验时应采用有效期内的相同批号试剂。试剂的贮存与配制应严格按照产品说明进行。

3.4.3 校准品

应采用与被评价试剂配套的校准品或经实验验证可用于被评价检测系统的产品。校准品的使用应严格按照产品说明,仪器校准步骤与间隔应按照实验室内标准操作程序进行。

3.5 实验室安全

干扰评价实验中使用的所有样品均应按感染性物质处理。实验室废弃物的处理,实验人员防护及实验室环境应符合生物安全2级防护要求。

3.6 干扰物筛查实验

3.6.1 概述

3.2.3 中列出的干扰物清单中可能包括多种物质,需要通过干扰物筛查实验对这些物质进行初步鉴别。实验方法为首先在基础样品中添加较高浓度的可能干扰物质,使之成为实验样品,然后分别检测实验样品与对照样品中的被测含量,通过配对t检验判断两样品的测定结果间差异是否具有统计学意义。如没有统计学意义,则由此物质引起的误差不会影响临床判定,不认为此物质是干扰物,如具有统计学意义,则考虑此物质可能具有干扰作用,需进一步实验以确定干扰物浓度与干扰效应间的关系。
3.6.2 样品制备

3.6.2.1 基础样品

从未服用过药物的健康人群中采集新鲜标本（血清、尿液等）。将标本混匀后即成为基础样品。如新鲜标本难以取得，也可采用冰冻或冻干样品。但应注意这类样品中含有防腐剂与稳定剂或其他可能会对检测结果造成影响的成分。因此在应用此类样品之前应对其基质效应进行评价。

确定基础样品中的被测量浓值，可通过添加纯分析物使样品中被测量浓度达到医学决定水平。

3.6.2.2 干扰物原液

干扰物质的纯品多为固体，需要根据适当的溶剂将其溶解，制成干扰物原液。如所用的是药品级制品，应注意所含赋形剂、防腐剂、杀菌剂、抗氧化剂、色素剂、调味剂、金属氧化物、填充物等对检测结果造成的影响。

溶剂应使干扰物充分溶解且不会影响检测结果。常用溶剂有纯水、盐酸溶液或氢氧化钠溶液、乙醇或甲醇、丙酮、二甲基亚砜等。

原液浓度应至少 20 倍于实验浓度，以减少对基础样品基质的稀释。应注意防止有机溶剂的挥发，并考虑其在水中的溶解度。

3.6.2.3 实验样品与对照样品

以 20 倍于实验浓度的干扰物原液为例，实验样品与对照样品的制备方法见表2。注意样品制备时取样体积必须准确，必要时可采用容量瓶。

<table>
<thead>
<tr>
<th>样品制备种类与体积</th>
<th>基础样品用量 mL</th>
<th>干扰物原液用量 mL</th>
<th>溶剂用量 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>实验样品 10 mL</td>
<td>9.5</td>
<td>0.50</td>
<td>0</td>
</tr>
<tr>
<td>对照样品 10 mL</td>
<td>9.5</td>
<td>0</td>
<td>0.50</td>
</tr>
</tbody>
</table>

3.6.3 测定重复次数

为排除被评价方法的精密度对干扰效果的影响，每份样品的测定次数需根据统计学检验的置信水平与检验效能及被评价方法的批内精密度与干扰标准计算得出。设统计假设 1 类错误的概率为 α、2 类错误的概率为 β，干扰方向不明确时使用双侧检验，计算公式见式(1)，干扰方向已确定时则使用单侧检验，计算公式见式(2)。

\[n = \frac{1}{4} \left(\frac{z_{(1-\alpha/2)} + z_{(1-\beta)}}{s/d_{\text{max}}} \right)^2 \] \hspace{1cm} (1)

式中：

- \(z_{(1-\alpha/2)} \) ——双侧检验 100(1-α)%置信水平时正态分布所对应的百分位数，常见置信水平下的 Z 值参见表 3；
- \(z_{(1-\beta)} \) ——检验效能 100(1-β)%时正态分布所对应的百分位数，常见检验效能下的 Z 值参见表 3；
- \(s \) ——被评价方法的批内重复性标准差；
\[\text{式中:} \]
\[z = \left(\frac{d_{\text{max}}}{s} \right)^{\frac{1}{2}} \]

表 3 常见置信水平与检验效能下的 z 值

<table>
<thead>
<tr>
<th>置信水平/检验效能</th>
<th>0.900</th>
<th>0.950</th>
<th>0.975</th>
<th>0.990</th>
<th>0.995</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>1.282</td>
<td>1.645</td>
<td>1.960</td>
<td>2.326</td>
<td>2.576</td>
</tr>
</tbody>
</table>

为便于使用，表 4 中列出了 95%置信水平与检验效能下不同干扰标准所需的样品重复测定数。

表 4 95%置信水平与检验效能下不同干扰标准所需样品测定数

<table>
<thead>
<tr>
<th>(d_{\text{max}}/s)</th>
<th>重复数</th>
<th>(d_{\text{max}}/s)</th>
<th>重复数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>41</td>
<td>1.5</td>
<td>12</td>
</tr>
<tr>
<td>1.0</td>
<td>22</td>
<td>1.6</td>
<td>10</td>
</tr>
<tr>
<td>1.1</td>
<td>18</td>
<td>1.8</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>16</td>
<td>2.0</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>14</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td>3.0</td>
<td>3</td>
</tr>
</tbody>
</table>

注: \(d_{\text{max}}/s \) 为干扰标准与重复性标准差的比值。

3.6.4 测定步骤

3.6.4.1 将实验样品（T）与对照样品（C）按 3.6.3 中计算出的重复数 \(n \) 各分装 \(n \) 份。

3.6.4.2 用被评价方法检测样品中被测量浓度，样品测定顺序为 \(C_1, T_1, C_2, T_2, C_3, T_3, \ldots, C_n, T_n \)。

3.6.4.3 如检测系统存在携带污染，可在检测过程中加测对照样品以减少实验样品的可能污染，测定顺序为 \(C_1, T_1, C_2, C_3, C_4, T_2, C_5, C_6, C_7, T_3, \ldots, C_n, C_{n-1}, C_n, T_n \)。此处 \(C_n \) 为加测的对照样品，其测定结果不参加实验数据分析。

3.6.4.4 记录检测结果，格式参照附录 D。

3.6.5 数据处理与分析

3.6.5.1 计算干扰效果

用实验样品与对照样品测定均值间的偏移 \(d_{\text{diff}} \) 表示干扰效果，计算公式见式(3)。

\[d_{\text{diff}} = \bar{x}_{\text{test}} - \bar{x}_{\text{control}} \]

式中:
\[\bar{x}_{\text{test}} \] —— 实验样品测定均值；
\[\bar{x}_{\text{control}} \] —— 对照样品测定均值。

3.6.5.2 计算界值 \(d \)。

双侧检验时界值计算公式见式(4)，单侧检验时界值计算公式见式(5)。
\[d_e = \frac{d_{null} + z_{1-a/2}}{\sqrt{n}} \] \hspace{2cm} (4)

\[d_e = \frac{d_{null} + z_{1-a}}{\sqrt{n}} \] \hspace{2cm} (5)

式中:

- \(d_{null} \) ——无效假设的值，通常为 0；
- \(z_{1-a/2} \) ——相对于双边检验 100(1-\(a\))%置信水平正态分布的百分数；
- \(z_{1-a} \) ——相对于单边检验 100(1-\(a\))%置信水平正态分布的百分数；
- \(s \) ——被评价方法的批内重复性标准差；
- \(n \) ——样品重复次数。

3.6.5.3 计算干扰效果的 95%置信区间

计算干扰效果的 95%置信区间 \(\eta \) 见式(6)。

\[\eta = (\bar{x}_{test} - \bar{x}_{control}) \pm t_{0.025,n-1} \frac{s}{\sqrt{n}} \] \hspace{2cm} (6)

式中:

- \(t_{0.025,n-1} \) ——自由度为 \(n-1 \), \(t \) 分布的第 97.5%概率密度值。当 \(n \geq 30 \) 时，\(t_{0.025,n-1} \) 近似等于 2.0；
- \(s \) ——被评价方法的批内重复性标准差；
- \(n \) ——样品重复次数。

其余符号所示内容见式(3)。

3.6.5.4 结果分析

如果 \(d_{obs} \leq d_e \), 则可判断由被评价干扰物所致偏差未超过允许标准，不认为此物质为干扰物。反之则认为被评价干扰物对被评价方法有明显干扰作用。

3.7 干扰物剂量效应评价实验

3.7.1 概述

对于经干扰筛选出对被评价方法有明显干扰作用的可能干扰物，需对其在不同浓度下对测定结果的干扰效应进行评价。

3.7.2 样品制备

3.7.2.1 基础样品

参见 3.6.2.1 制备方法。

3.7.2.2 干扰物原液

参见 3.6.2.2 制备方法。

3.7.2.3 干扰物高实验浓度样品与低实验浓度样品

干扰物高实验浓度样品制备方法参见 3.6.2.3 中实验样品的制备，其干扰物终浓度可参见附录 C。干扰物低实验浓度的制备参见 3.6.2.3 中对照样品的制备，其干扰物终浓度为临床标本中此干扰物的平均浓度，常可忽略为零。
3.7.2.4 实验样品系列的制备

将3.7.2.3中干扰物高实验浓度样品与低实验浓度样品定量混合，可得到干扰物浓度介于两样品之间的一系列实验样品。确定线性关系相关关系时需要5个浓度水平。具体制备方法见表5。

表5 干扰物不同浓度系列样品的制备

<table>
<thead>
<tr>
<th>系列样品号</th>
<th>高实验浓度样品用量 mL</th>
<th>低实验浓度样品用量 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>7.5</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

3.7.3 测定重复次数

与干扰筛选实验一样，评价干扰物剂量效应时也需排除方法精密度对结果的影响，通常每个水平重复测定3次即可满足要求。

3.7.4 测定步骤

3.7.4.1 将实验系列样品每份分装3支。
3.7.4.2 所有样品一次检测完成，将样品按干扰物浓度从低到高的顺序命名为样品1、2、3、4、5，则检测顺序为第一组测定按升序（12345），第二组测定按降序（54321），第三组为升序。
3.7.4.3 也可按随机数表为样品进行分组，决定检测顺序。
3.7.4.4 记录检测结果，格式可参照附录E。

3.7.5 数据处理与分析

3.7.5.1 概述

计算最低干扰物浓度样品的测定均值，用5个水平样品的每个测定值减去此均值得出不同浓度干扰的干扰效果。以干扰效果为Y值，干扰物浓度为X值，绘出干扰物剂量相关曲线，根据曲线趋势进行数据分析。

3.7.5.2 线性相关

3.7.5.2.1 如曲线为近似直线，可用最小二乘法分析，数学模型见式(7)。

\[Y_0 = a + bX_0 + E_0 \]

式中：
- \(Y_0 \) ——第i个样品第j次重复测定时的干扰效果值；
- \(X_0 \) ——第i个样品的干扰物浓度；
- \(a \) ——截距；
- \(b \) ——斜率；
- \(E_0 \) ——第i个样品第j次重复测定时实测值与预测值的差。

3.7.5.2.2 计算线性回归方程的相关参数，通过回归分析，可得到Y与X间的数学关系式及相关参
数。斜率 b 的计算公式见式(8)。

$$
b = \frac{\sum_{i=1}^{5} \sum_{j=1}^{3} (x_{ij} - \bar{x}) (y_{ij} - \bar{y})}{\sum_{i=1}^{5} \sum_{j=1}^{3} (x_{ij} - \bar{x})^2}
$$

式中:
- \bar{x} ——全部样品的干扰浓度均值；
- \bar{y} ——全部样品的干扰效果均值；
其余符号表示内容见式(7)。

截距 a 的计算公式见式(9)。

$$
a = \bar{y} - bx
$$

式中符号所示内容见式(8)。

回归方程的估计标准误 s_y, 计算公式见式(10)。

$$
s_y = \sqrt{\frac{\sum_{i=1}^{5} \sum_{j=1}^{3} [y_{ij} - P(x_{ij})]^2}{i \times j - 2}}
$$

式中:
- $P(x_{ij})$ ——样品中干扰物质浓度为 x_{ij} 时由回归方程得出的 y 预测值；
- i ——样品数，此处为 5；
- j ——每份样品的重复测定次数，此处为 3；
其余符号表示内容见式(7)。

回归方程斜率 b 的标准误 s_b 计算公式见式(11)。

$$
s_b = \frac{s_y}{\sqrt{\sum_{i=1}^{5} \sum_{j=1}^{3} (x_{ij} - \bar{x})^2}}
$$

式中符号所示内容见式(7)、式(8)、式(10)。

3.7.5.2.3 对斜率 b 进行统计学检验，对回归方程的斜率 b 进行 t 检验。设总体回归系数为 β，假设检验为 $H_0: \beta = 0$，$H_1: \beta \neq 0$。

据式(12)计算统计量 t。

$$
t = \frac{b - \beta}{s_b} = \frac{b}{s_b}
$$

式中:
- β ——总体回归系数，此处为 0；
- b ——回归方程的斜率；
- s_b ——回归方程斜率 b 的标准误。

由 t 值查出 $t(0.05, i \times j - 2)$，如 $t > t(0.05, i \times j - 2)$，表明 $p < 0.05$，否定 H_0，接受 H_1，斜率 b 有统计学意义，
直线回归方程成立。如 $t < t(0.05, i \times j - 2)$，表明 $p > 0.05$，否定 H_1，接受 H_0，直线回归方程不成立。

对于非线性相关结果，可参照 3.7.5.3 进一步处理。

3.7.5.2.4 计算干扰物浓度对测定结果干扰效应的 95％置信区间；某一确定干扰物浓度对测定结果
干扰效应的双侧 95％置信区间。计算公式见式(13)。

$$
P(x_i) = \pm t(0.05, i \times j - 2) \times s_y \times \sqrt{\frac{1}{i \times j} + \frac{(x_i - \bar{x})^2}{\sum_{i=1}^{5} \sum_{j=1}^{3} (x_{ij} - \bar{x})^2}}
$$

式中：
WS/T 416—2013

\[P(x_i) \] ——样品中干扰物浓度为 \(x_i \) 时由回归方程得出的 \(y \) 预测值；

\[f_{(0.025, i - 2)} \] ——自由度为 \(i \cdot j - 2 \)。此处为 \(13 \), \text{t} 分布的第 2.5% 概率密度值；

\[x_i \] ——第 \(i \) 个样品的干扰物浓度，此处与 \(x_0 \) 相同；

其余符号所示内容见式(7)、式(8)、式(10)。

3.7.5.2.5 结果分析：回归方程的斜率 \(b \) 表示干扰物每个浓度单位所造成的干扰效果，斜率为正表明干扰物引起正向干扰，反之为负向干扰。截距 \(a \) 表示对内源性干扰物浓度的修正。干扰物任意浓度下对测定结果的影响程度可由回归方程得出。

3.7.5.3 非线性相关

如干扰剂量效应曲线为非线性，可采用非线性回归分析得出相应的最佳拟合曲线与数学模型，置信区间可用适当的非线性回归分析程序计算。具体计算方法较为复杂，建议采用统计学软件，如 SPSS、SAS 等进行计算。根据得出的最佳数学模型可推断出在评价范围内任意干扰物浓度所引起的干扰效应值。

4 干扰实验报告

干扰实验报告中应包括以下主要内容：

a) 被评价检测系统的名称、品牌、型号、所用试剂、校准品、质控品的生产厂家、批号；

b) 被测量的名称；

c) 被评价干扰物化学名称或通用名称；

d) 干扰评价方案依据；

e) 干扰实验中使用的样品类型及被测量浓度与干扰物浓度；

f) 表述干扰效果的相关数据或方程；

g) 在描述干扰效果时，可用以下方式：

1) 列出干扰物质的特定浓度，高于此浓度可引起超过干扰标准的偏差；

2) 列出干扰物质的特定浓度，低于此浓度未观察到具临床意义的干扰。

h) 当定量信息无法得到或引用参考文献中的相关内容时，须将可能干扰物质及其对被评价方法不具干扰性的信息以方法特异性说明的方式进行总结说明。
表 A. 1 常见生化项目质量指标

<table>
<thead>
<tr>
<th>分析项目</th>
<th>基于生物学变异的质量规范</th>
<th>CLIA’88 中的质量规范</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>允许 CV %</td>
<td>允许的偏倚（Tea）%</td>
</tr>
<tr>
<td>ALT</td>
<td>12.2</td>
<td>12</td>
</tr>
<tr>
<td>AST</td>
<td>6</td>
<td>5.4</td>
</tr>
<tr>
<td>AMY</td>
<td>4.8</td>
<td>7.8</td>
</tr>
<tr>
<td>LDH</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>CK</td>
<td>11.4</td>
<td>11.5</td>
</tr>
<tr>
<td>GGT</td>
<td>6.9</td>
<td>10.8</td>
</tr>
<tr>
<td>ALP</td>
<td>3.2</td>
<td>6.4</td>
</tr>
<tr>
<td>TP</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>ALB</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>T-BIL</td>
<td>12.8</td>
<td>10</td>
</tr>
<tr>
<td>D-BIL</td>
<td>18.4</td>
<td>14.2</td>
</tr>
<tr>
<td>UA</td>
<td>4.3</td>
<td>4.8</td>
</tr>
<tr>
<td>UREA</td>
<td>6.2</td>
<td>5.5</td>
</tr>
<tr>
<td>CREA</td>
<td>2.2</td>
<td>3.4</td>
</tr>
<tr>
<td>GLU</td>
<td>3.3</td>
<td>2.3</td>
</tr>
<tr>
<td>T-C</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>TG</td>
<td>10.5</td>
<td>10.7</td>
</tr>
<tr>
<td>LDL-C</td>
<td>4.2</td>
<td>6.8</td>
</tr>
<tr>
<td>HDL-C</td>
<td>3.6</td>
<td>5.2</td>
</tr>
<tr>
<td>Apo A1</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Apo B</td>
<td>3.5</td>
<td>6</td>
</tr>
<tr>
<td>K</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Na</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Cl</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Ca</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Mg</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>P</td>
<td>4.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>
常见被测量的建议实验浓度

表 B.1 常见被测量的建议实验浓度

<table>
<thead>
<tr>
<th>分析物</th>
<th>实验浓度单位</th>
<th>实验浓度低值</th>
<th>实验浓度高值</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨</td>
<td>10 μmol/L</td>
<td>14 μg/dL</td>
<td>80 μmol/L</td>
</tr>
<tr>
<td>白蛋白</td>
<td>35 g/L</td>
<td>3.5 g/dL</td>
<td>50 g/L</td>
</tr>
<tr>
<td>苯巴比妥</td>
<td>215 mol/L</td>
<td>5 μg/mL</td>
<td>1 722 mol/L</td>
</tr>
<tr>
<td>苯丙氨酸</td>
<td>61 μmol/L</td>
<td>1 mg/dL</td>
<td>1 211 μmol/L</td>
</tr>
<tr>
<td>苯妥英</td>
<td>12 μmol/L</td>
<td>3 μg/mL</td>
<td>79 μmol/L</td>
</tr>
<tr>
<td>丙酮</td>
<td>0.34 mmol/L</td>
<td>2 mg/dL</td>
<td>3.4 mmol/L</td>
</tr>
<tr>
<td>丙戊酸</td>
<td>35 mol/L</td>
<td>5 μg/mL</td>
<td>693 mol/L</td>
</tr>
<tr>
<td>C 反应蛋白</td>
<td>0.01 g/L</td>
<td>1 mg/dL</td>
<td>0.04 g/L</td>
</tr>
<tr>
<td>茶碱</td>
<td>33.3 μmol/L</td>
<td>6 μg/mL</td>
<td>111 μmol/L</td>
</tr>
<tr>
<td>促甲状腺素（TSH）</td>
<td>0.3 mIU/L</td>
<td>0.3 μIU/mL</td>
<td>8 mIU/L</td>
</tr>
<tr>
<td>雌三醇</td>
<td>139 nmol/L</td>
<td>40 ng/mL</td>
<td>1 040 nmol/L</td>
</tr>
<tr>
<td>皮质醇</td>
<td>0.5 mmol/L</td>
<td>0.4 ng/mL</td>
<td>2.6 mmol/L</td>
</tr>
<tr>
<td>地高辛</td>
<td>38 μmol/L</td>
<td>5 μg/mL</td>
<td>199 μmol/L</td>
</tr>
<tr>
<td>HDL 胆固醇</td>
<td>0.9 mmol/L</td>
<td>35 mg/dL</td>
<td>1.8 mmol/L</td>
</tr>
<tr>
<td>胆红素</td>
<td>1.7 nmol/L</td>
<td>50 mg/dL</td>
<td>10.4 nmol/L</td>
</tr>
<tr>
<td>黄体生成素（LH）</td>
<td>5 IU/L</td>
<td>110 IU/mL</td>
<td>5 mg/dL</td>
</tr>
<tr>
<td>肌酐</td>
<td>1 33 μmol/L</td>
<td>1.5 mg/dL</td>
<td>442 μmol/L</td>
</tr>
<tr>
<td>甲胎蛋白</td>
<td>300 ng/L</td>
<td>30 ng/dL</td>
<td>150 μg/L</td>
</tr>
<tr>
<td>钾</td>
<td>3 mmol/L</td>
<td>3 mEq/L</td>
<td>5 mmol/L</td>
</tr>
<tr>
<td>结合胆红素</td>
<td>3.4 μmol/L</td>
<td>0.2 mg/dL</td>
<td>86 μmol/L</td>
</tr>
<tr>
<td>卡巴嗪</td>
<td>12.7 μmol/L</td>
<td>3 μg/mL</td>
<td>50.8 μmol/L</td>
</tr>
<tr>
<td>奎尼丁</td>
<td>6.2 μmol/L</td>
<td>2 μg/mL</td>
<td>15 μmol/L</td>
</tr>
<tr>
<td>酮体</td>
<td>221 μmol/L</td>
<td>4 mg/dL</td>
<td>1 104 μmol/L</td>
</tr>
<tr>
<td>离子钙</td>
<td>1 mmol/L</td>
<td>4 mg/dL</td>
<td>2 mmol/L</td>
</tr>
<tr>
<td>钙</td>
<td>0.2 mmol/L</td>
<td>0.14 mg/dL</td>
<td>1.5 mmol/L</td>
</tr>
<tr>
<td>氯</td>
<td>90 mmol/L</td>
<td>90 mEq/L</td>
<td>110 mmol/L</td>
</tr>
<tr>
<td>卵泡刺激素（FSH）</td>
<td>5 IU/L</td>
<td>5 mIU/mL</td>
<td>40 IU/L</td>
</tr>
<tr>
<td>钠</td>
<td>1.8 mmol/L</td>
<td>3.9 mg/dL</td>
<td>2.6 mmol/L</td>
</tr>
<tr>
<td>N-乙酰辅酶A（NAPA）</td>
<td>18 mol/L</td>
<td>5 μg/mL</td>
<td>108 mol/L</td>
</tr>
</tbody>
</table>
表 B.1（续）

<table>
<thead>
<tr>
<th>分析物</th>
<th>实验浓度低值</th>
<th>实验浓度高温值</th>
</tr>
</thead>
<tbody>
<tr>
<td>钠</td>
<td>130 mmol/L</td>
<td>150 mmol/L</td>
</tr>
<tr>
<td></td>
<td>130 mEq/L</td>
<td>150 mEq/L</td>
</tr>
<tr>
<td>尿素</td>
<td>3 mmol/L</td>
<td>7 mmol/L</td>
</tr>
<tr>
<td></td>
<td>9 mg/dL</td>
<td>40 mg/dL</td>
</tr>
<tr>
<td>尿酸</td>
<td>0.2 mmol/L</td>
<td>0.5 mmol/L</td>
</tr>
<tr>
<td></td>
<td>3 mg/dL</td>
<td>9 mg/dL</td>
</tr>
<tr>
<td>肌质醇</td>
<td>138 nmol/L</td>
<td>828 nmol/L</td>
</tr>
<tr>
<td></td>
<td>5 μg/dL</td>
<td>30 μg/dL</td>
</tr>
<tr>
<td>葡萄糖</td>
<td>4.4 mmol/L</td>
<td>6.7 mmol/L</td>
</tr>
<tr>
<td></td>
<td>80 mg/dL</td>
<td>120 mg/dL</td>
</tr>
<tr>
<td>普鲁米铵</td>
<td>14 mol/L</td>
<td>55 mol/L</td>
</tr>
<tr>
<td></td>
<td>3 μg/mL</td>
<td>12 μg/mL</td>
</tr>
<tr>
<td>普鲁卡因酰胺</td>
<td>17 mol/L</td>
<td>42 mol/L</td>
</tr>
<tr>
<td></td>
<td>4 μg/mL</td>
<td>10 μg/mL</td>
</tr>
<tr>
<td>胺</td>
<td>1.21 μmol/L</td>
<td>4.83 μmol/L</td>
</tr>
<tr>
<td></td>
<td>25 μg/dL</td>
<td>100 μg/dL</td>
</tr>
<tr>
<td>白蛋白</td>
<td>100 g/L</td>
<td>400 g/L</td>
</tr>
<tr>
<td></td>
<td>10 mg/dL</td>
<td>40 mg/dL</td>
</tr>
<tr>
<td>去甲肾上腺素</td>
<td>0.65 nmol/L</td>
<td>110 pg/mL</td>
</tr>
<tr>
<td></td>
<td>4.14 nmol/L</td>
<td>700 pg/mL</td>
</tr>
<tr>
<td>精氨酸</td>
<td>0.2 nmol/L</td>
<td>8 ng/dL</td>
</tr>
<tr>
<td></td>
<td>1.1 nmol/L</td>
<td>40 ng/dL</td>
</tr>
<tr>
<td>人绒毛膜促性腺激素(hCG)</td>
<td>5 IU/L</td>
<td>50 IU/L</td>
</tr>
<tr>
<td></td>
<td>5 mIU/mL</td>
<td>50 mIU/mL</td>
</tr>
<tr>
<td>乳酸盐(乳酸)</td>
<td>0.7 mmol/L</td>
<td>6.3 mg/dL</td>
</tr>
<tr>
<td></td>
<td>2.6 mmol/L</td>
<td>23.4 mg/dL</td>
</tr>
<tr>
<td>肾上腺素</td>
<td>218 pmol/L</td>
<td>40 pg/mL</td>
</tr>
<tr>
<td></td>
<td>546 pmol/L</td>
<td>100 pg/mL</td>
</tr>
<tr>
<td>水杨酸盐</td>
<td>0.14 mmol/L</td>
<td>2 mg/dL</td>
</tr>
<tr>
<td></td>
<td>1.45 mmol/L</td>
<td>20 mg/dL</td>
</tr>
<tr>
<td>铁</td>
<td>7.2 μmol/L</td>
<td>26.9 μmol/L</td>
</tr>
<tr>
<td></td>
<td>40 μg/dL</td>
<td>150 μg/dL</td>
</tr>
<tr>
<td>铁蛋白</td>
<td>45 pmol/L</td>
<td>449 pmol/L</td>
</tr>
<tr>
<td></td>
<td>20 ng/mL</td>
<td>200 ng/mL</td>
</tr>
<tr>
<td>铁结合力</td>
<td>44.8 μmol/L</td>
<td>250 μg/dL</td>
</tr>
<tr>
<td></td>
<td>80.6 μmol/L</td>
<td>450 μg/dL</td>
</tr>
<tr>
<td>维生素E</td>
<td>148 pmol/L</td>
<td>200 pg/mL</td>
</tr>
<tr>
<td></td>
<td>740 pmol/L</td>
<td>1000 pg/mL</td>
</tr>
<tr>
<td>维生素B12</td>
<td>17 μmol/L</td>
<td>1 mg/dL</td>
</tr>
<tr>
<td></td>
<td>257 μmol/L</td>
<td>15 mg/dL</td>
</tr>
<tr>
<td>末结合胆红素</td>
<td>0.8 mmol/L</td>
<td>2.5 mg/dL</td>
</tr>
<tr>
<td></td>
<td>2.1 mmol/L</td>
<td>6.5 mg/dL</td>
</tr>
<tr>
<td>铁蛋白</td>
<td>100 g/L</td>
<td>200 g/L</td>
</tr>
<tr>
<td></td>
<td>10 g/dL</td>
<td>20 g/dL</td>
</tr>
<tr>
<td>叶酸</td>
<td>11 nmol/L</td>
<td>34 nmol/L</td>
</tr>
<tr>
<td></td>
<td>5 ng/mL</td>
<td>15 ng/mL</td>
</tr>
<tr>
<td>乙醇</td>
<td>2.17 mmol/L</td>
<td>21.7 nmol/L</td>
</tr>
<tr>
<td></td>
<td>10 mg/dL</td>
<td>100 mg/dL</td>
</tr>
<tr>
<td>游离三碘甲腺原氨酸(FT3)</td>
<td>13 pmol/L</td>
<td>1 mg/dL</td>
</tr>
<tr>
<td></td>
<td>32.5 pmol/L</td>
<td>2.5 mg/dL</td>
</tr>
<tr>
<td>游离甲状腺素(FT4)</td>
<td>23 pmol/L</td>
<td>250 pg/dL</td>
</tr>
<tr>
<td></td>
<td>10.8 pmol/L</td>
<td>700 pg/dL</td>
</tr>
<tr>
<td>孕酮</td>
<td>3.2 nmol/L</td>
<td>1 ng/mL</td>
</tr>
<tr>
<td></td>
<td>64 nmol/L</td>
<td>20 mg/mL</td>
</tr>
<tr>
<td>载脂蛋白A1</td>
<td>0.8 g/L</td>
<td>80 mg/dL</td>
</tr>
<tr>
<td></td>
<td>1.8 g/L</td>
<td>180 mg/dL</td>
</tr>
<tr>
<td>载脂蛋白B</td>
<td>0.6 g/L</td>
<td>60 mg/dL</td>
</tr>
<tr>
<td></td>
<td>1.3 g/L</td>
<td>130 mg/dL</td>
</tr>
<tr>
<td>转铁蛋白</td>
<td>2 g/L</td>
<td>200 mg/dL</td>
</tr>
<tr>
<td></td>
<td>4 g/L</td>
<td>400 mg/dL</td>
</tr>
<tr>
<td>总CO2</td>
<td>20 mmol/L</td>
<td>35 mmol/L</td>
</tr>
<tr>
<td></td>
<td>20 mEq/L</td>
<td>35 mEq/L</td>
</tr>
<tr>
<td>总胆固醇</td>
<td>3.88 mmol/L</td>
<td>150 mg/dL</td>
</tr>
<tr>
<td></td>
<td>6.47 mmol/L</td>
<td>250 mg/dL</td>
</tr>
<tr>
<td>总钙</td>
<td>2 mmol/L</td>
<td>8 mg/dL</td>
</tr>
<tr>
<td></td>
<td>3 mmol/L</td>
<td>12 mg/dL</td>
</tr>
</tbody>
</table>
表 B.1（续）

<table>
<thead>
<tr>
<th>分析物</th>
<th>实验浓度低值</th>
<th>实验浓度高值</th>
</tr>
</thead>
<tbody>
<tr>
<td>总甘油三酯</td>
<td>1.7 mmol/L</td>
<td>5.6 mmol/L</td>
</tr>
<tr>
<td></td>
<td>150 mg/dL</td>
<td>500 mg/dL</td>
</tr>
<tr>
<td>总血清蛋白</td>
<td>60 g/L</td>
<td>80 g/L</td>
</tr>
<tr>
<td></td>
<td>6 g/dL</td>
<td>8 g/dL</td>
</tr>
</tbody>
</table>
常见内源性干扰物的建议实验浓度

常见内源性干扰物的建议实验浓度见表 C.1。

表 C.1 常见内源性干扰物的建议实验浓度

<table>
<thead>
<tr>
<th>干扰物</th>
<th>参考区间</th>
<th>病理值</th>
<th>建议实验浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨</td>
<td>11 μmol/L~32 μmol/L</td>
<td>107 μmol/L</td>
<td>107 μmol/L</td>
</tr>
<tr>
<td>白蛋白</td>
<td>39 g/L~51 g/L</td>
<td>—</td>
<td>60 g/L</td>
</tr>
<tr>
<td>半乳糖</td>
<td><0.28 mmol/L</td>
<td>—</td>
<td>0.84 mmol/L</td>
</tr>
<tr>
<td>丙酮</td>
<td>0.05 mmol/L~0.34 mmol/L</td>
<td>12 mmol/L</td>
<td>12 mmol/L</td>
</tr>
<tr>
<td>丙酮酸盐</td>
<td>34 μmol/L~103 μmol/L</td>
<td>—</td>
<td>309 μmol/L</td>
</tr>
<tr>
<td>草酸</td>
<td>11 μmol/L~27 μmol/L</td>
<td>>27 μmol/L</td>
<td>81 μmol/L</td>
</tr>
<tr>
<td>胆固醇</td>
<td>2.95 mmol/L~5.2 mmol/L</td>
<td>13 mmol/L</td>
<td>13 mmol/L</td>
</tr>
<tr>
<td>胆酸</td>
<td>0.07 μmol/L~0.91 μmol/L</td>
<td>—</td>
<td>2.67 μmol/L</td>
</tr>
<tr>
<td>胆汁酸</td>
<td>0 μmol/L~10 μmol/L</td>
<td>—</td>
<td>30 μmol/L</td>
</tr>
<tr>
<td>胆酸氧胆酸</td>
<td>0 μmol/L~1.61 μmol/L</td>
<td>2.5 μmol/L</td>
<td>30 μmol/L</td>
</tr>
<tr>
<td>甘油三酯</td>
<td>0.34 mmol/L~3.7 mmol/L</td>
<td>—</td>
<td>37 mmol/L</td>
</tr>
<tr>
<td>果糖</td>
<td>56 μmol/L~333 μmol/L</td>
<td>—</td>
<td>1000 μmol/L</td>
</tr>
<tr>
<td>还原型谷胱甘肽</td>
<td>0.79 mmol/L~1.05 mmol/L</td>
<td>—</td>
<td>3 mmol/L</td>
</tr>
<tr>
<td>β-胡萝卜素</td>
<td>0.19 μmol/L~1.58 μmol/L</td>
<td>3.7 μmol/L~11.2 μmol/L</td>
<td>3.7 μmol/L</td>
</tr>
<tr>
<td>肌酐</td>
<td>53 μmol/L~115 μmol/L</td>
<td>115 μmol/L</td>
<td>442 μmol/L</td>
</tr>
<tr>
<td>胆汁酸</td>
<td>3.6 mmol/L~5.0 mmol/L</td>
<td>7.0 mmol/L</td>
<td>7 mmol/L</td>
</tr>
<tr>
<td>结合胆红素</td>
<td>0 μmol/L~3.4 μmol/L (adult)</td>
<td>513 μmol/L</td>
<td>342 μmol/L</td>
</tr>
<tr>
<td>磷脂（作为卵磷脂）</td>
<td>0.7 mmol/L~3.0 mmol/L</td>
<td>—</td>
<td>9.0 mmol/L</td>
</tr>
<tr>
<td>醋</td>
<td>98 mmol/L~107 mmol/L</td>
<td>85 mmol/L~160 mmol/L</td>
<td>120 mmol/L</td>
</tr>
<tr>
<td>L-酪氨酸</td>
<td>44 mmol/L~1325 mmol/L</td>
<td>—</td>
<td>4000 mmol/L</td>
</tr>
<tr>
<td>镁</td>
<td>0.65 mmol/L~1.05 mmol/L</td>
<td>5 mmol/L</td>
<td>15 mmol/L</td>
</tr>
<tr>
<td>钠</td>
<td>135 mmol/L~145 mmol/L</td>
<td>180 mmol/L</td>
<td>180 mmol/L</td>
</tr>
<tr>
<td>尿素</td>
<td>1.1 mmol/L~14.3 mmol/L</td>
<td>—</td>
<td>42.9 mmol/L</td>
</tr>
<tr>
<td>尿酸</td>
<td>150 μmol/L~476 μmol/L</td>
<td>—</td>
<td>1.4 mmol/L</td>
</tr>
<tr>
<td>D-葡萄糖</td>
<td>4.1 mmol/L~5.9 mmol/L</td>
<td>1.7 mmol/L~55 mmol/L</td>
<td>55 mmol/L</td>
</tr>
<tr>
<td>pH</td>
<td>7.11~7.45</td>
<td><5.80</td>
<td>8</td>
</tr>
<tr>
<td>γ球蛋白</td>
<td>6 g/L~13 g/L</td>
<td>—</td>
<td>60 g/L</td>
</tr>
<tr>
<td>乳酸盐</td>
<td>0.5 mmol/L~2.2 mmol/L</td>
<td>6.6 mmol/L</td>
<td>6.6 mmol/L</td>
</tr>
</tbody>
</table>
表 C.1（续）

<table>
<thead>
<tr>
<th>干扰物</th>
<th>参考区间</th>
<th>病理值*</th>
<th>建议实验浓度³</th>
</tr>
</thead>
<tbody>
<tr>
<td>软脂酸</td>
<td>0.2 mmol/L～2.0 mmol/L</td>
<td></td>
<td>6.0 mmol/L</td>
</tr>
<tr>
<td>碳酸氢钠</td>
<td>21 mmol/L～28 mmol/L</td>
<td>10 mmol/L～45 mmol/L</td>
<td>35 mmol/L</td>
</tr>
<tr>
<td>维生素C</td>
<td>23 μmol/L～85 μmol/L</td>
<td>＜11 μmol/L</td>
<td>＞114 μmol/L</td>
</tr>
<tr>
<td>未结合胆红素</td>
<td>5 μmol/L～21 μmol/L（成人）</td>
<td>684 μmol/L</td>
<td>342 μmol/L</td>
</tr>
<tr>
<td>无机磷</td>
<td>2.6 mmol/L～3.7 mmol/L</td>
<td></td>
<td>11.1 mmol/L</td>
</tr>
<tr>
<td>无机硫</td>
<td>1 mmol/L</td>
<td>2 mmol/L</td>
<td>2 mmol/L</td>
</tr>
<tr>
<td>血红素</td>
<td>1 g/L～2 g/L</td>
<td>＞2 g/L</td>
<td>2 g/L</td>
</tr>
<tr>
<td>乙酰乙酸</td>
<td>＜0.1 mmol/L</td>
<td>2 mmol/L</td>
<td>2.0 mmol/L</td>
</tr>
<tr>
<td>硬脂酸</td>
<td>0.1 mmol/L</td>
<td></td>
<td>0.4 mmol/L</td>
</tr>
<tr>
<td>酸性</td>
<td>＜0.4 mmol/L</td>
<td></td>
<td>1.4 mmol/L</td>
</tr>
<tr>
<td>游离甘油</td>
<td>0.032 mmol/L～0.232 mmol/L</td>
<td></td>
<td>0.696 mmol/L</td>
</tr>
<tr>
<td>总蛋白</td>
<td>60 g/L～80 g/L</td>
<td>＜60 g/L</td>
<td>120 g/L</td>
</tr>
<tr>
<td>总钙</td>
<td>1.90 mmol/L～2.55 mmol/L</td>
<td>5.0 mmol/L</td>
<td>5.0 mmol/L</td>
</tr>
<tr>
<td>总尿酸脂肪酸</td>
<td>0 mmol/L～0.92 mmol/L</td>
<td></td>
<td>2.76 mmol/L</td>
</tr>
</tbody>
</table>

* 典型范围：包括最高预期血浓度。
³ 血清与血浆中正常与常见病理水平的上限。
附录 D
（资料性附录）
干扰检查实验结果记录表

干扰检查实验结果记录表见表 D.1。

表 D.1 干扰检查实验结果记录表

<table>
<thead>
<tr>
<th>项</th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>日期</td>
<td></td>
</tr>
<tr>
<td>仪器信息</td>
<td>仪器名称</td>
</tr>
<tr>
<td></td>
<td>生产厂家</td>
</tr>
<tr>
<td></td>
<td>型号</td>
</tr>
<tr>
<td>试剂信息</td>
<td>试剂名称</td>
</tr>
<tr>
<td></td>
<td>生产厂家</td>
</tr>
<tr>
<td></td>
<td>批号</td>
</tr>
<tr>
<td>样品类型</td>
<td></td>
</tr>
<tr>
<td>被测量</td>
<td>名称</td>
</tr>
<tr>
<td></td>
<td>实验浓度</td>
</tr>
<tr>
<td>干扰物</td>
<td>名称</td>
</tr>
<tr>
<td></td>
<td>实验浓度</td>
</tr>
<tr>
<td>干扰标准</td>
<td></td>
</tr>
<tr>
<td>重复测定次数</td>
<td></td>
</tr>
<tr>
<td>干扰界值</td>
<td></td>
</tr>
<tr>
<td>测定结果</td>
<td>实验样品</td>
</tr>
<tr>
<td></td>
<td>对比样品</td>
</tr>
<tr>
<td>均值</td>
<td></td>
</tr>
<tr>
<td>干扰效果</td>
<td></td>
</tr>
<tr>
<td>干扰效果的 95% 置信区间</td>
<td></td>
</tr>
<tr>
<td>结论</td>
<td></td>
</tr>
</tbody>
</table>
附录E
（资料性附录）

干扰剂量效应实验结果记录表

干扰剂量效应实验结果记录表见表E.1。

表E.1 干扰剂量效应实验结果记录表

<table>
<thead>
<tr>
<th></th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>日期</td>
<td></td>
</tr>
<tr>
<td>仪器信息</td>
<td></td>
</tr>
<tr>
<td>仪器名称</td>
<td></td>
</tr>
<tr>
<td>生产厂家</td>
<td></td>
</tr>
<tr>
<td>型号</td>
<td></td>
</tr>
<tr>
<td>试剂信息</td>
<td></td>
</tr>
<tr>
<td>试剂名称</td>
<td></td>
</tr>
<tr>
<td>生产厂家</td>
<td></td>
</tr>
<tr>
<td>批号</td>
<td></td>
</tr>
<tr>
<td>样品类型</td>
<td></td>
</tr>
<tr>
<td>被测量名称</td>
<td></td>
</tr>
<tr>
<td>干扰物名称</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>样品号</th>
<th>结果1</th>
<th>结果2</th>
<th>结果3</th>
</tr>
</thead>
<tbody>
<tr>
<td>测定结果</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>干扰物浓度</th>
<th>干扰效果1</th>
<th>干扰效果2</th>
<th>干扰效果3</th>
</tr>
</thead>
<tbody>
<tr>
<td>干扰效果</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

线性回归方程

\[y \]

\[y_b \]

\[y_t \]

斜率的统计学检验结果
参考文献

