DOI: 10.13602/j.cnki.jcls.2021.01.14

・质量管理研究・

利用 EXCEL 绘制多规则功效函数图及操作过程规范图

张裕, 彭爱红, 余启华, 杨丽华(湖南省第二人民医院 湖南省临床检验中心, 长沙 410007)

摘要:分析质控多规则误差检出概率产生的原理,通过使用电子表格 EXCEL,计算常用多规则 $1_{3s}/2_{2s}$ 、 $1_{3s}/2_{0f3}$ 2 $_{2s}$ 、 $1_{3s}/2_{2s}$ / R_{4s} 、 $1_{3s}/2_{0f3}$ 2 $_{2s}$ / R_{4s} 、 $1_{3s}/2_{0f3}$ 2 $_{2s}$ / R_{4s} 、 $1_{3s}/2_{2s}$ / R_{4s} 、 $1_{3s}/2_{2s}$ / R_{4s} 0 $_{2s}$ / R_{4s} 0 $_{2s}$ / R_{4s} 0 $_{2s}$ / R_{4s} 0 $_{3s}$ 0 $_{3s}$ / R_{4s} 0 $_{3s}$ 0

关键词:功效函数图;操作过程规范图;误差检出概率

中图分类号: R446 文献标志码: A

质控规则的选择和性能研究是目前临床实验室关心的问题,解决这一问题的主要途径是绘制功效函数图。目前绝大部分实验室不能自行绘制功效函数图和操作过程规范图,功效函数图软件的应用还不普遍^[1]。电子表格具有方便易获取的特点,利用电子表格计算单规则的功效函数已有探讨^[2]。本研究在基于单规则功效计算的基础上,分析多规则功效的计算原理并计算常用的几种多规则功效,绘制功效函数图和标准化操作过程规范图,在一定程度上帮助实验室人员进行手工实际操作。

1 多规则功效的计算

1.1 $1_{3s}/2_{2s}$ 、 $1_{3s}/2_{2s}/R_{4s}$ 规则的功效计算 则的"功效",即误差检出概率(probability for error $detection, P_{ed})$,来源于标准正态分布,可以理解为 不同误差条件下标准正态分布的概率变化[3]。 P_{ad} 可理解为"失控"概率,未违背质控规则的情况则符 合"在控"概率,1减去在控概率,即为该规则的 P_{ed} 。以用 2 个水平质控物检测 1 次 (N=2,R=1)时的135/225、135/225/R45规则为例,首先分析质控数 据的在控情况。根据质控规则的定义,质控数据将 会落在5个区间中,分别为<-3s、-3s~-2s、-2s~ 2s、2s~3s、>3s,其中,落在<-3s 和>3s 区间的数据 违背了13规则,故可以排除这2个区间。因此,只 需考虑2个质控数据(A和B)将落在剩下的3个 区间中的情况。按照排列组合原则,将出现 32(即 9)种情况,其中可能出现的在控及失控情况见表 1。Westgard 指出[4-5], R4. 规则可设定为1个质控数 据>2s 且另一个数据<-2s,还可设定为2个数据的 差值>4s,因 EXCEL 自带功能有限,本研究只讨论 前者,后者需用数学模拟软件进行模拟计算。

表 1 $1_{3s}/2_{2s}$ 、 $1_{3s}/2_{2s}/R_{4s}(N=2,R=1)$ 可能的在控情况

	区间 1	区间 2	区间 3	质控规则	质控规则
序号	$-3s \sim -2s$	$-2s\sim 2s$	$2s \sim 3s$	$1_{3s}/2_{2s}$	$1_{3s}/2_{2s}/{\rm R}_{4s}$
1	AB	_	_	违背 2 _{2s}	违背 2 _{2s}
2	A	В	_	在控	在控
3	A	_	В	在控	违背 R _{4s}
4	В	A	_	在控	在控
5	_	AB	_	在控	在控
6	_	A	В	在控	在控
7	В	_	A	在控	违背 R _{4s}
8	_	В	A	在控	在控
9	_	_	AB	违背 2 _{2s}	违背 2 _{2s}

通过观察表 1 中的在控情况,设定质控数据落在区间 1 的概率为 a,区间 2 的概率为 b,区间 3 的概率为 c。计算 $1_{3s}/2_{2s}$ 的在控概率算式为 2 * ab+2 * ac+1 * bb+2 * bc, $1_{3s}/2_{2s}/R_{4s}$ 的在控概率算式为 2 * ab+2 * ab+1 * bb+2 * bc。利用 EXCEL 中计算标准正态分布的累积分布函数 NORMSDIST 函数,可以算出上述规则发生不同系统误差时的功效,见表 2。

表 2 为 $1_{3s}/2_{2s}$ 、 $1_{3s}/2_{2s}/R_{4s}$ (N=2,R=1)的 EXCEL 计算公式及功效值表,可以发现, $1_{3s}/2_{2s}$ 规则和 $1_{3s}/2_{2s}/R_{4s}$ 规则,除了假失控概率 (probability for false rejection, P_{fr})即系统误差为 0 时的 P_{ed} 有 0.000 9的差距外,其他系统误差时 P_{ed} 几乎无差别。可见 R_{4s} 规则在多规则组合中提升功效的作用极小。因为违背 R_{4s} 规则的一部分情况已被 1_{3s} 规则排除,其次,随着系统误差的增加,违背 R_{4s} 规则概率也越来越小。鉴于二者功效相近,因此使用 $1_{3s}/2_{2s}$ 规则的实验室若增加 R_{4s} 规则后并不用担心会导致

失控情况明显增加。表 2 中最后一列为 Parvin^[6] 利用一亿次数据模拟计算后得出的功效,可以发现,在系统误差<1 时(西格玛度量值<2.65 时),与 EXCEL 计算出的 *P_{vt}*仅有 0.001 4~0.002 5 的差距,

归因于模拟计算时包括的 R_4 规则差值>4s 的情况,随着系统误差的增加,这种情况发生的概率也越来越小,当系统误差>1.5 时(西格玛度量值>3.15 时), P_{cd} 几乎无差别。

表 $2 = 1_{3a}/2_{2s}$ 、 $1_{3s}/2_{2s}/R_{4s}(N=2,R=1)$ EXCEL 计异公式及切效值							
系统误差	西格玛度量值	a(-3s~-2s)	b(-2s-2s)	c(2s~3s)	$1_{3s}/2_{2s}$	$1_{3s}/2_{2s}/R_{4s}$	$1_{3s}/2_{2s}/R_{4s}$
		NORMSDIST (-2-	NORMSDIST (2-	NORMSDIST (3-	1-(2 * C2 * D2+2	1-(2 * C2 * D2+	
SE	σ	A2)-NORMSDIST	A2)-NORMSDIST	A2)-NORMSDIST	* C2 * E2 + D2 *	D2 * D2 + 2 * D2	模拟计算
		(-3-A2)	(-2-A2)	(2-A2)	D2+2 * D2 * E2)	* E2)	
0.0	1.65	0.021 4	0.954 5	0.021 4	0.006 3	0.007 2	0.009 7
0.5	2.15	0.006 0	0.927 0	0.060 6	0.016 6	0.017 3	0.019 5
1.0	2.65	0.001 3	0.840 0	0.135 9	0.063 5	0.063 9	0.065 3
1.5	3.15	0.000 2	0.691 2	0.241 7	0.187 6	0.187 7	0.188 4
2.0	3.65	0.000 0	0.500 0	0.341 3	0.408 7	0.408 7	0.408 9
2.5	4.15	0.000 0	0.308 5	0.382 9	0.668 5	0.668 5	0.668 6
3.0	4.65	0.000 0	0.158 7	0.341 3	0.866 5	0.866 5	0.866 5
3.5	5.15	0.000 0	0.066 8	0.241 7	0.963 2	0.963 2	0.963 2
4.0	5.65	0.000 0	0.022 8	0.135 9	0.993 3	0.993 3	0.993 3
4.5	6.15	0.000 0	0.006 2	0.060 6	0.999 2	0.999 2	0.999 2
5.0	6.65	0.000.0	0.001.3	0.021.4	0 999 9	0 999 9	0 999 9

表 5。

表 2 1_{3s}/2_{2s}、1_{3s}/2_{2s}/R_{4s}(N=2,R=1)EXCEL 计算公式及功效值

1.2 $1_{3s}/2063_{2s}$ 、 $1_{3s}/2063_{2s}/R_{4s}$ 规则的功效计算 利用上述原理,计算 $1_{3s}/2063_{2s}$ 、 $1_{3s}/2063_{2s}/R_{4s}$ 规则 (N=3,R=1)时的功效,需要先分析 3 个质控数据点(A、B、C)的在控分布情况,按照排列组合原则,将出现 3^3 (即 27)种情况,其中 $1_{3s}/2063_{2s}$ 规则可能出现的在控情况有 13 种, $1_{3s}/2063_{2s}/R_{4s}$ 规则可能出现的在控情况有 7 种,见表 3 。

表 3 $1_{3s}/20f3_{2s}$ 、 $1_{3s}/20f3_{2s}/R_{4s}(N=3,R=1)$ 可能的在控情况

다 ㅁ	区间 1	区间 2	区间 3	质控规则	质控规则
序号 ($-3s \sim -2s$)	(-2s-2s)	$(2s \sim 3s)$	$1_{3s}/2\mathrm{of3}_{2s}$	$1_{3s}/2{\rm of3}_{2s}/{\rm R}_{4s}$
1	A	В	С	在控	违背 R _{4s}
2	A	C	В	在控	违背 R _{4s}
3	В	A	C	在控	违背 R _{4s}
4	В	C	A	在控	违背 R _{4s}
5	C	В	A	在控	违背 R _{4s}
6	C	A	В	在控	违背 R _{4s}
7	_	AC	В	在控	在控
8	В	AC	_	在控	在控
9	_	AB	C	在控	在控
10	C	AB	_	在控	在控
11	A	BC	_	在控	在控
12	_	BC	A	在控	在控
13	_	ABC		在控	在控

通过观察表 3 中的在控情况,设定质控数据落在区间 1 的概率为 a,区间 2 的概率为 b,区间 3 的概率为 c。计算 1_{3s} /2of3 $_{2s}$ 规则的在控概率算式为 6 * abc+3 * abb+3 * bbc+1 * bbb, 1_{3s} /2of3 $_{2s}$ / R_{4s} 规则的在控概率算式为 3 * abb+3 * bbc+1 * bbb。利用

NORMSDIST 函数,可以算出上述规则发生不同系统误差时的功效,见表4。

通过比较表 4 的功效数据可以发现和表 3 类似的特点, $1_{3s}/2$ of 3_{2s} 规则与 $1_{3s}/2$ of 3_{2s} /R_{4s}规则有相似的功效。EXCEL 与模拟计算出的 P_{ed} 仅在极低西格玛度量值范围时有微小的差距,其他范围的功效几乎一致。

1.3 $1_{3s}/2_{2s}/R_{4s}/4_{1s}$ 规则的功效计算 利用上述原 理,计算 $1_{3s}/2_{2s}/R_{4s}/4_{1s}$ 规则 (N=4,R=1) 的功效, 需要先分析质控数据点的分布情况。与前面的多 规则不同,4个质控数据点将会落在7个区间中,分 别为<-3s、 $-3s \sim -2s$ 、 $-2s \sim -1s$ 、 $-1s \sim 1s$ 、 $1s \sim 2s$ 、 $2s \sim -1s$ 3s > 3s。其中,落在<-3s 和>3s 区间的数据违背了 13规则,故可以排除这2个区间。因此,需考虑4 个质控数据(A、B、C、D)落在剩下的5个区间中的 情况。按照排列组合原则,将出现 5^4 (即 625)种情 况。其中,违背2、规则的情况有220种,排除后剩 下的情况中违背 R4x规则的情况有 108 种,排除后 剩下的情况中违背 4、规则的情况有 10 种,最终在 控的情况为 287 种,若在传统 Westgard 多规则需 12启动的情况下[7],则在控情况为 289 种(包括了 A B C D 均在 - 2s - 1s 和 1s - 2s 的 2 种情况)。因数据较多,本文只列出最终计算出的功效与使用 质控软件 Westgard Advisor 模拟的功效数据,见

系统误差	西格玛度量值	$a(-3s \sim -2s)$	b(-2s-2s)	$c(2s \sim 3s)$	$1_{3s}/2\text{of3}_{2s}$	$1_{3s}/2 \text{of} 3_{2s}/R_{4s}$	$1_{3s}/2 \text{of} 3_{2s}/R_{4s}$
SE	σ	NORMSDIST (-2-A2)-NORMSDIST (-3-A2)	NORMSDIST (2-A2)-NORMSDIST (-2-A2)	NORMSDIST (3-A2)-NORMSDIST (2-A2)	1-(6 * C2 * D2 * E2+3 * C2 * D2 * D2+3 * D2 * D2 * E2+D2^3)	1-(3 * C2 * D2 * D2+3 * D2 * D2 * E2+D2^3)	模拟计算
0.0	1.65	0.021 4	0.954 5	0.021 4	0.010 8	0.013 4	0.020 2
0.5	2.15	0.006 0	0.927 0	0.060 6	0.029 8	0.031 8	0.037 6
1.0	2.65	0.001 3	0.840 0	0.135 9	0.115 9	0.116 8	0.120 4
1.5	3.15	0.000 2	0.691 2	0.241 7	0.322 7	0.322 9	0.324 3
2.0	3.65	0.000 0	0.500 0	0.341 3	0.619 0	0.619 0	0.619 3
2.5	4.15	0.000 0	0.308 5	0.382 9	0.861 3	0.861 3	0.861 3
3.0	4.65	0.000 0	0.158 7	0.341 3	0.970 2	0.970 2	0.970 2
3.5	5.15	0.000 0	0.066 8	0.241 7	0.996 5	0.996 5	0.996 5
4.0	5.65	0.000 0	0.022 8	0.135 9	0.999 8	0.999 8	0.999 8
4.5	6.15	0.000 0	0.006 2	0.060 6	1.000 0	1.000 0	1.000 0
5.0	6.65	0.000.0	0.001.3	0.021.4	1 000 0	1 000 0	1 000 0

表 4 1₃,/2of3₂,1₃,/2of3₂/R₄,(N=3,R=1)EXCEL 计算公式及功效值

通过表 5 可以看出,存在 289 种在控情况下的功效比 287 种的功效要略低,但更接近于 Westgard Advisor 模拟的功效,两者的功效相差甚微。而 287 种在控情况的功效更高,因其判断失控情况更加严格。

表 5 $1_{3s}/2_{2s}/R_{4s}/4_{1s}(N=4,R=1)2$ 种情况下的功效

•	53	23 43 13 (, , , , , , ,	**= ******
系统	西格玛	287 种在控	289 种在控	W 1 4 1 .
误差	度量值	情况下的功效	情况下的功效	Westgard Advisor
0	1.65	0.022	0.022	0.032
0.20	1.85	0.027	0.026	_
0.40	2.05	0.043	0.040	_
0.60	2.25	0.075	0.070	_
0.80	2.45	0.129	0.121	_
1.00	2.65	0.212	0.198	_
1.21	2.86	0.330	0.312	0.315
1.41	3.06	0.464	0.443	0.441
1.61	3.26	0.605	0.584	0.574
1.80	3.45	0.729	0.710	0.703
2.01	3.66	0.839	0.826	0.812
2.21	3.86	0.913	0.904	0.892
2.41	4.06	0.958	0.953	0.945
2.61	4.26	0.982	0.980	0.975
2.81	4.46	0.993	0.992	0.989
3.00	4.65	0.998	0.997	0.996
3.21	4.86	0.999	0.999	0.999
3.41	5.06	1.000	1.000	1.000

2 绘制多规则功效函数图及操作过程规范图

综合上述计算方法算出的功效,可以绘制出多规则的功效函数图,因 $1_{3s}/2_{2s}$ 与 $1_{3s}/2_{2s}/R_{4s}$ 功效相近, $1_{3s}/2_{0s}$ 与 $1_{3s}/2_{0s}/R_{4s}$ 功效相近,故都只绘制后者, $1_{3s}/2_{2s}/R_{4s}/4_{1s}$ 规则此处为 289 种在控情况时的功效。3 种多规则功效函数图见图 1,图形显示 3 种多规则的 P_{fr} 均很低,其中多规则 $1_{3s}/2_{2s}/R_{4s}/4_{1s}$ 因组合的

规则和 N 最多,因此 P_{f} 和 P_{ed} 为三者中最高。

操作过程规范 (operational process specifications, OPSpecs) 图^[8] 显示的是测定方法的不精密 度、偏倚和备选质控规则之间的一种线条图。绘制 OPSpecs 图的关键在于, 计算出在指定 P_{ed} , 如 90%、50%时,备选质控规则的临界系统误差 (ΔSE) 。可利用 EXCEL 的单变量求解功能计 算[2],或是在上述计算公式表格中 SE 处输入一个 合适的可使 P_{ed} 等于 0.90 或 0.50 的值。5 种多规则 的 P_{α} 以及在具有 $90\%P_{\alpha d}$ 时的 ΔSE 、西格玛度量值 和允许不精密度取值见表 6。可以发现,13/22与 $1_{3s}/2_{2s}/R_{4s}$ 规则的 ΔSE 一致 $1_{3s}/2$ of 3_{2s} 与 $1_{3s}/2$ of $3_{2s}/2$ R_4 规则的 ΔSE 一致, 故都只绘制后者, OPSpecs 图 见图 2。图中可发现 13/23/R44和 13/20f33/R44规 则可以完全保证5西格玛度量值水平检测系统的 质量,13/22/R4/41。可以完全保证4西格玛度量值 水平检测系统的质量,符合 Westgard 六西格玛规 则[9]设计的方案。

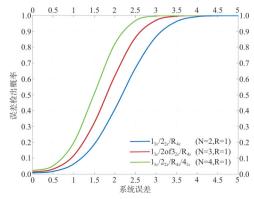


图 1 3 种多规则功效函数图

	$P_{\it fr}$	ΔSE	西格玛度量值	允许不精密度(%)
$1_{3s}/2_{2s}(N=2,R=1)$	0.63%	3.127	4.777	20.9
$1_{3s}/2_{2s}/R_{4s}(N=2,R=1)$	0.72%	3.127	4.777	20.9
$1_{3s}/2$ of $3_{2s}(N=3, R=1)$	1.08%	2.624	4.274	23.4
$1_{3s}/2$ of $3_{2s}/R_{4s}(N=3,R=1)$	1.34%	2.624	4.274	23.4
$1_{3s}/2_{2s}/R_{4s}/4_{1s}(N=4,R=1)$	2.15%	2.197	3.847	26.0

表 6 具有 90% P_{ed} 时 5 种多规则的 ΔSE 及允许不精密度

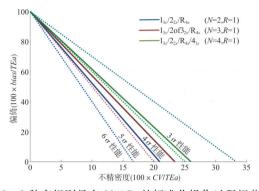


图 2 3 种多规则具有 $90\%P_{ed}$ 的标准化操作过程规范图

3 小结

质控规则分为单规则和将多个单规则组合起来的多规则质控程序。常用的单规则如 1_{3x} 、 $1_{3x,5}$ 在判断失控情况时非常方便,但单规则往往只对随机误差敏感,并且提供的 P_{ed} 有限。而多规则尽管在判断失控时相对麻烦,但其优点是可以在保持较低的 P_{g} 的同时,提供更高的 P_{ed} [5],并且根据组合的规则不同,可以反映多种误差类型和趋势性变化。利用 EXCEL 计算多规则的功效,能帮助理解多规则功效的原理,方便手工应用,但随着组合的规则越多,N 越大,质控数据的分布将越复杂,计算将变得繁琐。实验室在缺乏专业质控软件的情况下,可利用上述方法计算常用多规则的功效并绘制功效函数图和标准化 OPSpecs 图,结合单规则质控方案,进行更加丰富的个性化室内质控设计。

4 参考文献

- [1]孙慧珍,王薇,赵海建,等.临床检验定量测定项目室内统计质量控制程序的研究进展[J].中华检验医学杂志,2019,42(10):879-883.
- [2] 张裕, 余启华, 杨丽华. 利用 EXCEL 制作单规则质量控制方法 功效函数图及操作过程规范图[J]. 临床检验杂志, 2019, 37 (3); 229-232.
- [3] Westgard JO, Groth T. Power functions for statistical control rules [J]. Clin Chem, 1979, 25(6): 863-869.
- [4] Westgard SA. 50 ways (+) to break your Westgard rules [EB/OL]. (2019-12).https://www.westgard.com/50-ways-westgard-rules.htm
- [5] Westgard JO. 医学实验室质量控制实践基础[M]. 上海:上海科学技术出版社,2015:79,210.
- [6] Parvin CA, Kuchipudi L, Yundt-Pacheco JC. Should I repeat my 1: 2s QC rejection? [J]. Clin Chem, 2012, 58(5): 925-929.
- [7] Westgard JO, Barry PL, Hunt MR, et al. A multi-rule shewhart chart for quality control in clinical chemistry [J]. Clin Chem, 1981, 27(3): 493-501.
- [8] Westgard JO. Charts of Operational Process Specifications (OPSpecs Charts) for assessing the precision, accuracy, and quality control needed to satisfy proficiency testing criteria [J]. Clin Chem, 1992, 38(7): 1226-1233.
- [9] Westgard JO. A total quality-control plan with right-sized statistical quality-control [J]. Clin Lab Med, 2017, 37(1); 137-150.

(收稿日期:2020-08-27) (本文编辑:王海燕)